Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-37786718

RESUMO

Knockout (KO) of the fatty acid-activation enzyme very long-chain acyl-CoA synthetase 3 (ACSVL3; SLC27A3) in U87MG glioblastoma cells reduced their malignant growth properties both in vitro and in xenografts. These U87-KO glioma cells grew at a slower rate, became adherence-dependent, and were less invasive than parental U87 cells. U87-KO cells produced fewer, slower-growing subcutaneous and intracranial tumors when implanted in NOD-SCID mice. Thus, depleting U87MG cells of ACSVL3 restored these cells to a phenotype more like that of normal astrocytes. To understand the mechanisms underlying these beneficial changes, we investigated several possibilities, including the effects of ACSVL3 depletion on carbohydrate metabolism. Proteomic and metabolomic profiling indicated that ACSVL3 KO produced changes in glucose and energy metabolism. Even though protein levels of glucose transporters GLUT1 and GLUT3 were reduced by KO, cellular uptake of labeled 2-deoxyglucose was unaffected. Glucose oxidation to CO2 was reduced nearly 7-fold by ACSVL3 depletion, and the cellular glucose level was 25% higher in KO cells. Glycolytic enzymes were upregulated by KO, but metabolic intermediates were essentially unchanged. Surprisingly, lactate production and the levels of lactate dehydrogenase isozymes LDHA and LDHB were elevated by ACSVL3 KO. The activity of the pentose phosphate pathway was found to be lower in KO cells. Citric acid cycle enzymes, electron transport chain complexes, and ATP synthase protein levels were all reduced by ACSVL3 depletion. Mitochondria were elongated in KO cells, but had a more punctate morphology in U87 cells. The mitochondrial potential was unaffected by lack of ACSVL3. We conclude that the beneficial effects of ACSVL3 depletion in human glioblastoma cells may result in part from alterations in diverse metabolic processes that are not directly related to role(s) of this enzyme in fatty acid and/or lipid metabolism. (Supported by NIH 5R01NS062043 and KKI institutional funds.).

2.
bioRxiv ; 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37205435

RESUMO

Decreasing the expression of very long-chain acyl-CoA synthetase 3 (ACSVL3) in U87MG glioblastoma cells by either RNA interference or genomic knockout (KO) significantly decreased their growth rate in culture, as well as their ability to form rapidly growing tumors in mice. U87-KO cells grew at a 9-fold slower rate than U87MG cells. When injected subcutaneously in nude mice, the tumor initiation frequency of U87-KO cells was 70% of that of U87MG cells, and the average growth rate of tumors that did form was decreased by 9-fold. Two hypotheses to explain the decreased growth rate of KO cells were investigated. Lack of ACSVL3 could reduce cell growth either by increasing apoptosis, or via effects on the cell cycle. We examined intrinsic, extrinsic, and caspase-independent apoptosis pathways; none were affected by lack of ACSVL3. However, significant differences in the cell cycle were seen in KO cells, suggesting arrest in S-phase. Levels of cyclin-dependent kinases 1, 2, and 4 were elevated in U87-KO cells, as were regulatory proteins p21 and p53 that promote cell cycle arrest. In contrast, lack of ACSVL3 reduced the level of the inhibitory regulatory protein p27. γ-H2AX, a marker of DNA double strand breaks, was elevated in U87-KO cells, while pH3, a mitotic index marker, was reduced. Previously reported alterations in sphingolipid metabolism in ACSVL3-depleted U87 cells may explain the effect of KO on cell cycle. These studies reinforce the notion that ACSVL3 is a promising therapeutic target in glioblastoma.

3.
Clin Exp Metastasis ; 39(2): 363-374, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35050429

RESUMO

The genes miR-4510 and glypican-3 (GPC3) have reported to be closely associated with tumors, with miR-4510 inversely correlated with GPC3 mRNA and protein in hepatocellular carcinoma samples. Glypican-3-expressing gastric cancer (GPC3-GC), characterized as gastric cancer (GC) expressing GPC3, accounts for 11% of the GC cases. However, the expression and mechanism of action of miR-4510 in GPC3-GC have not been clearly defined. We found that miR-4510 expression in GC tissues was significantly lower than that in the adjacent tissues (p < 0.001). miRNA-4510 expression in GPC3-GC was significantly lower than that in GPC3-negative GC tissue (p < 0.001). Our study confirmed that miR-4510 is inversely correlated with GPC3 in gastric cancer samples and that GPC3 is a direct target gene of miR-4510. The proportion of M2 macrophages in GC with low expression of miR-4510 was significantly increased, while the proliferation of CD8+ T cells was limited. miR-4510 may change the immunosuppressive signals in the tumor microenvironment by downregulating GPC3 and inhibiting gastric cancer cell metastasis. Oxaliplatin treatment may become a specific therapeutic drug for patients with miR-4510 inhibition and GPC3-GC.


Assuntos
Neoplasias Hepáticas , MicroRNAs , Neoplasias Gástricas , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glipicanas/genética , Glipicanas/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Microambiente Tumoral/genética
4.
Med Res Arch ; 9(5)2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34395855

RESUMO

Gliomas are the largest category of primary malignant brain tumors in adults, and glioblastomas account for nearly half of malignant gliomas. Glioblastomas are notoriously aggressive and drug-resistant, with a very poor 5 year survival rate of about 5%. New approaches to treatment are thus urgently needed. We previously identified an enzyme of fatty acid metabolism, very long-chain acyl-CoA synthetase 3 (ACSVL3), as a potential therapeutic target in glioblastoma. Using the glioblastoma cell line U87MG, we created a cell line with genomic deletion of ACSVL3 (U87-KO) and investigated potential mechanisms to explain how this enzyme supports the malignant properties of glioblastoma cells. Compared to U87MG cells, U87-KO cells grew slower and assumed a more normal morphology. They produced fewer, and far smaller, subcutaneous xenografts in nude mice. Acyl-CoA synthetases, including ACSVL3, convert fatty acids to their acyl-CoA derivatives, allowing participation in diverse downstream lipid pathways. We examined the effect of ACSVL3 depletion on several such pathways. Fatty acid degradation for energy production was not affected in U87-KO cells. Fatty acid synthesis, and incorporation of de novo synthesized fatty acids into membrane phospholipids needed for rapid tumor cell growth, was not significantly affected by lack of ACSVL3. In contrast, U87-KO cells exhibited evidence of altered sphingolipid metabolism. Levels of ceramides containing 18-22 carbon fatty acids were significantly lower in U87-KO cells. This paralleled the fatty acid substrate specificity profile of ACSVL3. The rate of incorporation of stearate, an 18-carbon saturated fatty acid, into ceramides was reduced in U87-KO cells, and proteomics revealed lower abundance of ceramide synthesis pathway enzymes. Sphingolipids, including gangliosides, are functional constituents of lipid rafts, membrane microdomains thought to be organizing centers for receptor-mediated signaling. Both raft morphology and ganglioside composition were altered by deficiency of ACSVL3. Finally, levels of sphingosine-1-phosphate, a sphingolipid signaling molecule, were reduced in U87-KO cells. We conclude that ACSVL3 supports the malignant behavior of U87MG cells, at least in part, by altering cellular sphingolipid metabolism.

5.
J Cell Biochem ; 122(10): 1337-1349, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34056752

RESUMO

X-linked adrenoleukodystrophy (XALD) is a genetic neurologic disorder with multiple phenotypic presentations and limited therapeutic options. The childhood cerebral phenotype (CCALD), a fatal demyelinating disorder affecting about 35% of patients, and the adult-onset adrenomyeloneuropathy (AMN), a peripheral neuropathy affecting 40%-45% of patients, are both caused by mutations in the ABCD1 gene. Both phenotypes are characterized biochemically by elevated tissue and plasma levels of saturated very long-chain fatty acids (VLCFA), and an increase in plasma cerotic acid (C26:0), along with the clinical presentation, is diagnostic. Administration of oils containing monounsaturated fatty acids, for example, Lorenzo's oil, lowers patient VLCFA levels and reduced the frequency of development of CCALD in presymptomatic boys. However, this therapy is not currently available. Hematopoietic stem cell transplant and gene therapy remain viable therapies for boys with early progressive cerebral disease. We asked whether any existing approved drugs can lower VLCFA and thus open new therapeutic possibilities for XALD. Using SV40-transformed and telomerase-immortalized skin fibroblasts from an XALD patient, we conducted an unbiased screen of a library of approved drugs and natural products for their ability to decrease VLCFA, using measurement of C26:0 in lysophosphatidyl choline (C26-LPC) by tandem mass spectrometry as the readout. While several candidate drugs were initially identified, further testing in primary fibroblast cell lines from multiple CCALD and AMN patients narrowed the list to one drug, the anti-hypertensive drug irbesartan. In addition to lowering C26-LPC, levels of C26:0 and C28:0 in total fibroblast lipids were reduced. The effect of irbesartan was dose dependent between 2 and 10 µM. When male XALD mice received orally administered irbesartan at a dose of 10 mg/kg/day, there was no reduction in plasma C26-LPC. However, irbesartan failed to lower mouse fibroblast C26-LPC consistently. The results of these studies indicate a potential therapeutic benefit of irbesartan in XALD that should be validated by further study.


Assuntos
Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Adrenoleucodistrofia/tratamento farmacológico , Descoberta de Drogas/métodos , Ácidos Graxos/deficiência , Fibroblastos/metabolismo , Irbesartana/farmacologia , Mutação , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/metabolismo , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/metabolismo , Adrenoleucodistrofia/patologia , Animais , Anti-Hipertensivos/farmacologia , Modelos Animais de Doenças , Ensaios de Triagem em Larga Escala , Humanos , Camundongos , Camundongos Knockout , Cultura Primária de Células
6.
Appl Immunohistochem Mol Morphol ; 29(7): 541-545, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33958523

RESUMO

Because of the distinct and complex anatomy of the ampullary region, the exact origin of the periampullary tumors was often difficult to ascertain. In this study, we evaluated 78 patient samples, including 26 small intestinal adenocarcinomas, 35 pancreatic ductal adenocarcinomas, and 17 cholangiocarcinomas by immunohistochemical detection of cadherin-17 (CDH17), CDX2, CK20, and CK19 protein expression. The result showed that CDH17 and CDX2 expression was higher in small intestinal adenocarcinoma (73.1% and 65.4%) than in pancreatic (14.3% and 2.9%) and bile duct (41.2% and 23.5%) cancers, respectively. CK20 expression was low in 78 tumor tissues, but relatively high in small intestinal adenocarcinoma (42.3%). CK19 showed a strong positive expression in all 78 adenocarcinoma tissues. The CDH17-high/CDX2-high pattern was predominantly expressed in small intestinal cancer tissues (75%), whereas the CDH17-low/CDX2-low pattern was observed in pancreatic cancers (63.8%) and bile duct cancers (20.9%). The study concluded that CDH17-high/CDX2-high adenocarcinomas more likely originated from small intestine versus pancreas or bile duct, whereas CDH17-low/CDX2-low ones are more likely of pancreatic origin. The combined use of CDH17 and CDX2 could be helpful in providing support for the histologic origin of periampullary adenocarcinoma.


Assuntos
Neoplasias dos Ductos Biliares , Fator de Transcrição CDX2/metabolismo , Caderinas/metabolismo , Carcinoma Ductal Pancreático , Colangiocarcinoma , Neoplasias Duodenais , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/patologia , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patologia , Neoplasias Duodenais/metabolismo , Neoplasias Duodenais/patologia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
7.
J Biol Chem ; 293(17): 6544-6555, 2018 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-29507094

RESUMO

Krüppel-like factor 4 (KLF4) is a zinc finger transcription factor critical for the regulation of many cellular functions in both normal and neoplastic cells. Here, using human glioblastoma cells, we investigated KLF4's effects on cancer cell metabolism. We found that forced KLF4 expression promotes mitochondrial fusion and induces dramatic changes in mitochondrial morphology. To determine the impact of these changes on the cellular functions following, we analyzed how KLF4 alters glioblastoma cell metabolism, including glucose uptake, glycolysis, pentose phosphate pathway, and oxidative phosphorylation. We did not identify significant differences in baseline cellular metabolism between control and KLF4-expressing cells. However, when mitochondrial function was impaired, KLF4 significantly increased spare respiratory capacity and levels of reactive oxygen species in the cells. To identify the biological effects of these changes, we analyzed proliferation and survival of control and KLF4-expressing cells under stress conditions, including serum and nutrition deprivation. We found that following serum starvation, KLF4 altered cell cycle progression by arresting the cells at the G2/M phase and that KLF4 protected cells from nutrition deprivation-induced death. Finally, we demonstrated that methylation-dependent KLF4-binding activity mediates mitochondrial fusion. Specifically, the downstream targets of KLF4-mCpG binding, guanine nucleotide exchange factors, serve as the effector of KLF4-induced mitochondrial fusion, cell cycle arrest, and cell protection. Our experimental system provides a robust model for studying the interactions between mitochondrial morphology and function, mitochondrial dynamics and metabolism, and mitochondrial fusion and cell death during tumor initiation and progression.


Assuntos
Divisão Celular , Fase G2 , Glioblastoma/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Dinâmica Mitocondrial , Proteínas de Neoplasias/metabolismo , Consumo de Oxigênio , Linhagem Celular Tumoral , Sobrevivência Celular , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/genética , Proteínas de Neoplasias/genética
8.
JAMA Neurol ; 74(5): 519-524, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28288261

RESUMO

Importance: X-linked adrenoleukodystrophy (ALD) may switch phenotype to the fatal cerebral form (ie, cerebral ALD [cALD]), the cause of which is unknown. Determining differences in antioxidant capacity and superoxide dismutase (SOD) levels between phenotypes may allow for the generation of a clinical biomarker for predicting the onset of cALD, as well as initiating a more timely lifesaving therapy. Objective: To identify variations in the levels of antioxidant capacity and SOD activity between ALD phenotypes in patients with cALD or adrenomyeloneuropathy (AMN), heterozygote female carriers, and healthy controls and, in addition, correlate antioxidant levels with clinical outcome scores to determine a possible predictive value. Design, Setting, and Participants: Samples of monocytes and blood plasma were prospectively collected from healthy controls, heterozygote female carriers, and patients with AMN or cALD. We are counting each patient as 1 sample in our study. Because adrenoleukodystrophy is an X-linked disease, the affected group populations of cALD and AMN are all male. The heterozygote carriers are all female. The samples were assayed for total antioxidant capacity and SOD activity. The data were collected in an academic hospital setting. Eligibility criteria included patients who received a diagnosis of ALD and heterozygote female carriers, both of which groups were compared with age-matched controls. The prospective samples (n = 30) were collected between January 2015 to January 2016, and existing samples were collected from tissue storage banks at the Kennedy Krieger Institute (n = 30). The analyses were performed during the first 3 months of 2016. Main Outcome and Measures: Commercially available total antioxidant capacity and SOD assays were performed on samples of monocytes and blood plasma and correlated with magnetic resonance imaging severity score. Results: A reduction in antioxidant capacity was shown between the healthy controls (0.225 mmol trolox equivalent) and heterozygote carriers (0.181 mmol trolox equivalent), and significant reductions were seen between healthy controls and patients with AMN (0.102 mmol trolox equivalent; P < .01), as well as healthy controls and patients with cALD (0.042 mmol trolox equivalent; P < .01). Superoxide dismutase activity in human blood plasma mirrored these reductions between prospectively collected samples from healthy controls (2.66 units/mg protein) and samples from heterozygote female carriers (1.91 units/mg protein), patients with AMN (1.39 units/mg protein; P = .01), and patients with cALD (0.8 units/mg protein; P < .01). Further analysis of SOD activity in biobank samples showed significant reductions between patients with AMN (0.89 units/mg protein) and patients with cALD (0.18 units/mg protein) (P = .03). Plasma SOD levels from patients with cALD demonstrated an inverse correlation to brain magnetic resonance imaging severity score (R2 = 0.75, P < .002). Longitudinal plasma SOD samples from the same patients (n = 4) showed decreased activity prior to and at the time of cerebral diagnosis over a period of 13 to 42 months (mean period, 24 months). Conclusions and Relevance: Plasma SOD may serve as a potential biomarker for cerebral disease in ALD following future prospective studies.


Assuntos
Adrenoleucodistrofia/sangue , Antioxidantes/metabolismo , Monócitos/metabolismo , Superóxido Dismutase/metabolismo , Bancos de Tecidos , Adolescente , Adrenoleucodistrofia/diagnóstico por imagem , Adrenoleucodistrofia/genética , Biomarcadores/sangue , Criança , Pré-Escolar , Feminino , Heterozigoto , Humanos , Lactente , Masculino , Fenótipo , Estudos Prospectivos , Estudos Retrospectivos , Espectrofotometria
9.
BMC Cancer ; 14: 401, 2014 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-24893952

RESUMO

BACKGROUND: Targeting cell metabolism offers promising opportunities for the development of drugs to treat cancer. We previously found that the fatty acyl-CoA synthetase VL3 (ACSVL3) is elevated in malignant brain tumor tissues and involved in tumorigenesis. This study investigates the role of ACSVL3 in the maintenance of glioblastoma multiforme (GBM) stem cell self-renewal and the capacity of GBM stem cells to initiate tumor xenograft formation. METHODS: We examined ACSVL3 expression during differentiation of several GBM stem cell enriched neurosphere cultures. To study the function of ACSVL3, we performed loss-of-function by using small interfering RNAs to target ACSVL3 and examined stem cell marker expression, neurosphere formation and tumor initiation properties. RESULTS: ACSVL3 expression levels were substantially increased in GBM stem cell enriched neurosphere cultures and decreased after differentiation of the neurospheres. Down-regulating ACSVL3 with small inhibiting RNAs decreased the expression of markers and regulators associated with stem cell self-renewal, including CD133, ALDH, Musashi-1 and Sox-2. ACSVL3 knockdown in neurosphere cells led to increased expression of differentiation markers GFAP and Tuj1. Furthermore, ACSVL3 knockdown reduced anchorage-independent neurosphere cell growth, neurosphere-forming capacity as well as self-renewal of these GBM stem cell enriched neurosphere cultures. In vivo studies revealed that ACSVL3 loss-of-function substantially inhibited the ability of neurosphere cells to propagate orthotopic tumor xenografts. A link between ACSVL3 and cancer stem cell phenotype was further established by the findings that ACSVL3 expression was regulated by receptor tyrosine kinase pathways that support GBM stem cell self-renewal and tumor initiation, including EGFR and HGF/c-Met pathways. CONCLUSIONS: Our findings indicate that the lipid metabolism enzyme ACSVL3 is involved in GBM stem cell maintenance and the tumor-initiating capacity of GBM stem cell enriched-neurospheres in animals.


Assuntos
Neoplasias Encefálicas/genética , Diferenciação Celular/genética , Coenzima A Ligases/genética , Glioblastoma/genética , Animais , Neoplasias Encefálicas/patologia , Carcinogênese/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Glioblastoma/patologia , Humanos , Metabolismo dos Lipídeos/genética , Camundongos , Células-Tronco Neoplásicas/patologia , Transdução de Sinais , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Cancer Res ; 74(11): 3168-79, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24710409

RESUMO

Glioblastoma (GBM) stem cells (GSC) are a subpopulation of tumor cells that display stem-like characteristics (stemness) and play unique roles in tumor propagation, therapeutic resistance, and tumor recurrence. Therapeutic targets in GSCs are a focus of increasing interest to improve GBM therapy. Here we report that the hyaluronan-mediated motility receptor (HMMR) is highly expressed in GBM tumors, where it supports the self-renewal and tumorigenic potential of GSCs. HMMR silencing impairs GSC self-renewal and inhibits the expression of GSC markers and regulators. Furthermore, HMMR silencing suppresses GSC-derived tumor growth and extends the survival of mice bearing GSC xenografts. Conversely, HMMR overexpression promotes GSC self-renewal and intracranial tumor propagation. In human GBM tumor specimens, HMMR expression is correlated positively with the expression of stemness-associated markers and regulators. Our findings identify HMMR as a candidate therapeutic target to GSCs as a GBM treatment strategy.


Assuntos
Carcinogênese/metabolismo , Carcinogênese/patologia , Proteínas da Matriz Extracelular/metabolismo , Glioblastoma/metabolismo , Glioblastoma/patologia , Receptores de Hialuronatos/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Carcinogênese/genética , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Proteínas da Matriz Extracelular/genética , Glioblastoma/genética , Humanos , Receptores de Hialuronatos/genética , Camundongos , Camundongos SCID
11.
PLoS One ; 8(7): e69392, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23936004

RESUMO

Lung cancer is the leading cause of cancer deaths worldwide. In the United States, only one in six lung cancer patients survives five years after diagnosis. These statistics may improve if new therapeutic targets are identified. We previously reported that an enzyme of fatty acid metabolism, very long-chain acyl-CoA synthetase 3 (ACSVL3), is overexpressed in malignant glioma, and that depleting glioblastoma cells of ACSVL3 diminishes their malignant properties. To determine whether ACSVL3 expression was also increased in lung cancer, we studied tumor histologic sections and lung cancer cell lines. Immunohistochemical analysis of normal human lung showed moderate ACSVL3 expression only in bronchial epithelial cells. In contrast, all of 69 different lung tumors tested, including adeno-, squamous cell, large cell, and small cell carcinomas, had robustly elevated ACSVL3 levels. Western blot analysis of lung cancer cell lines derived from these tumor types also had significantly increased ACSVL3 protein compared to normal bronchial epithelial cells. Decreasing the growth rate of lung cancer cell lines did not change ACSVL3 expression. However, knocking down ACSVL3 expression by RNA interference reduced cell growth rates in culture by 65-76%, and the ability of tumor cells to form colonies in soft agar suspension by 65-80%. We also conducted studies to gain a better understanding of the biochemical properties of human ACSVL3. ACSVL3 mRNA was detected in many human tissues, but the expression pattern differed somewhat from that of the mouse. The enzyme activated long- and very long-chain saturated fatty acid substrates, as well as long-chain mono- and polyunsaturated fatty acids to their respective coenzyme A derivatives. Endogenous human ACSVL3 protein was found in a punctate subcellular compartment that partially colocalized with mitochondria as determined by immunofluorescence microscopy and subcellular fractionation. From these studies, we conclude that ACSVL3 is a promising new therapeutic target in lung cancer.


Assuntos
Coenzima A Ligases/metabolismo , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Animais , Brônquios/patologia , Adesão Celular , Linhagem Celular Tumoral , Proliferação de Células , Coenzima A Ligases/genética , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Ácidos Graxos/metabolismo , Imunofluorescência , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Transporte Proteico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Frações Subcelulares/enzimologia
12.
Invest Ophthalmol Vis Sci ; 52(1): 434-41, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20811062

RESUMO

PURPOSE: Previous analyses of the DBA/2J mouse glaucoma model show a sectorial degeneration pattern suggestive of an optic nerve head insult. In addition, there are large numbers of retinal ganglion cells (RGCs) that cannot be retrogradely labeled but maintain RGC gene expression, and many of these have somatic phosphorylated neurofilament labeling. Here the authors further elucidate these features of glaucomatous degeneration in a rat ocular hypertension model. METHODS: IOP was elevated in Wistar rats by translimbal laser photocoagulation. Retina whole mounts were analyzed for Sncg mRNA in situ hybridization, fluorogold (FG) retrograde labeling, and immunohistochemistry for phosphorylated neurofilaments (pNF) at 10 and 29 days after IOP increase. A novel automatic method was used to estimate axon numbers in plastic sections of optic nerves. RESULTS: Sncg mRNA was confirmed as a specific marker for RGCs in rat. Loss of RGCs after IOP elevation occurred in sectorial patterns. Sectors amid degeneration contained RGCs that were likely disconnected because these had pNF in their somas and dendrites, were not labeled by FG, and were associated with reactive plasticity within the retina. Most of the axon loss within the optic nerve already occurred by 10 days after the onset of IOP elevation. CONCLUSIONS: These data demonstrate that the pattern of RGC loss after laser-induced ocular hypertension in rats is similar to that previously reported in DBA/2J mice. The results support the view that in glaucoma RGC axons are damaged at the optic nerve head and degenerate within the optic nerve before there is loss of RGC somas.


Assuntos
Axônios/patologia , Modelos Animais de Doenças , Degeneração Neural/patologia , Hipertensão Ocular/patologia , Disco Óptico/patologia , Doenças do Nervo Óptico/patologia , Células Ganglionares da Retina/patologia , Animais , Biomarcadores/metabolismo , Contagem de Células , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Hibridização In Situ , Pressão Intraocular , Fotocoagulação a Laser , Degeneração Neural/metabolismo , Proteínas de Neurofilamentos/metabolismo , Hipertensão Ocular/metabolismo , Doenças do Nervo Óptico/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Células Ganglionares da Retina/metabolismo , gama-Sinucleína/genética , gama-Sinucleína/metabolismo
13.
Mech Dev ; 123(10): 761-82, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16963235

RESUMO

Foxe3 is a winged helix/forkhead domain transcription factor necessary for mammalian and amphibian lens development. Human FOXE3 mutations cause anterior segment dysgenesis and cataracts. The zebrafish foxe3 cDNA was PCR amplified from 24 h post-fertilization (hpf) embryo cDNA. The zebrafish foxe3 gene consists of a single exon on chromosome 8 and encodes a 422 amino acid protein. This protein possesses 44% and 67% amino acid identity with the human FOXE3 and Xenopus FoxE4 proteins, respectively. A polyclonal antiserum was generated against a bacterial fusion protein containing the Foxe3 carboxyl terminus. The purified antiserum detects zebrafish Foxe3 on immunoblots, in embryo wholemounts, and frozen tissue sections. The zebrafish Foxe3 protein is first detected in the lens at 31hpf and is restricted to the nucleated cell population, including the epithelial and elongating fiber cells. Knockdown of Foxe3 protein using an antisense morpholino results in small lenses with multilayered epithelial cells and fiber cell dysmorphogenesis. The morphants posses normal retinas, although retinal cell proteins, including rhodopsin, are abnormally expressed in the morphant lens tissue. Functional interactions between foxe3 and pitx3 during lens development were assessed by RT-PCR and comparison of Foxe3 and Pitx3 protein expression in both foxe3 and pitx3 morphants. Immunoblots and immunohistochemistry reveal Pitx3 is expressed in the foxe3 morphant lens, while Pitx3 knockdown results in the elimination of Foxe3 expression. These data demonstrate that Foxe3 is necessary for lens development in zebrafish and that foxe3 lies genetically downstream of pitx3 in a zebrafish lens development pathway.


Assuntos
Proteínas do Olho/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Proteínas de Homeodomínio/metabolismo , Cristalino/embriologia , Morfogênese , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Sequência de Aminoácidos , Animais , Biomarcadores/metabolismo , Proteínas do Olho/classificação , Proteínas do Olho/genética , Fatores de Transcrição Forkhead/classificação , Fatores de Transcrição Forkhead/genética , Proteínas de Homeodomínio/genética , Humanos , Cristalino/anatomia & histologia , Cristalino/metabolismo , Dados de Sequência Molecular , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , Filogenia , Alinhamento de Sequência , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/classificação , Proteínas de Peixe-Zebra/genética
14.
Mech Dev ; 122(4): 513-27, 2005 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15804565

RESUMO

The human PITX3 gene encodes a bicoid-like homeodomain transcription factor associated with a variety of congenital ocular conditions, including anterior segment dysgenesis, Peter's anomaly, and cataracts. We identified a zebrafish pitx3 gene encoding a protein (Pitx3) that possesses 63% amino acid identity with human PITX3. The zebrafish pitx3 gene encompasses approximately 16.5kb on chromosome 13 and consists of four exons, which is similar to the genomic organization of other pitx genes. Expression of the zebrafish pitx3 gene was studied by in situ mRNA hybridization and RT-PCR. The pitx3 transcripts were detected throughout development with the greatest level of expression occurring in the developing lens and brain at 24hpf. In adults, the highest expression was detected in the eye. Morpholinos were used to knockdown expression of the Pitx3 protein and a control morpholino that contains five mismatched bases was used to confirm the specificity of the phenotypes. The morphants had small eyes, misshapen heads and reduced jaws and fins relative to controls. The morphants exhibited abnormalities in lens development and their retinas contained pyknotic nuclei accompanied by a reduction in the number of cells in different neuronal classes. This suggests the lens is required for retinal development or Pitx3 has an unexpected role in retinal cell differentiation or survival. These results demonstrate zebrafish pitx3 represents a true ortholog of the human PITX3 gene and the general function of the Pitx3 protein in lens development is conserved between mammals and the teleost fish.


Assuntos
Proteínas de Homeodomínio/metabolismo , Cristalino/embriologia , Cristalino/metabolismo , Retina/embriologia , Retina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Peixe-Zebra/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Animais Geneticamente Modificados , Clonagem Molecular , Embrião não Mamífero/embriologia , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Humanos , Imuno-Histoquímica , Dados de Sequência Molecular , Fenótipo , Alinhamento de Sequência , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/genética
15.
Dev Biol ; 269(1): 286-301, 2004 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-15081374

RESUMO

The vertebrate retina develops from a sheet of neuroepithelial cells. Because adherens and tight junctions are critical for epithelial and neuronal differentiation in a variety of eukaryotic systems, we examined the role of Par-3, a PDZ scaffold protein that is critical in cellular membrane junction formation. We cloned the zebrafish Par-3 ortholog (pard3), which encodes two Pard3 proteins (150 and 180 kDa) that differ in their carboxyl-terminus. Immunohistochemistry revealed that Pard3 localized to the apical region of the retinal and brain neuroepithelium, partially overlapping the adherens junction-associated actin bundles. After retinal lamination, the Pard3 protein was restricted to the outer limiting membrane and the outer and inner plexiform layers in the retina. Reducing Pard3 expression with antisense morpholinos caused loss of the retinal pigmented epithelia, disruption of retinal lamination, and cell death in the ventral diencephalon, which resulted in cyclopia. Overexpressing Pard3 by injection of wild-type pard3 mRNA resulted in cyclopia and eyeless embryos. Thus, Pard3 plays a critical role in the origination and separation of zebrafish eye fields and retinal lamination.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Moléculas de Adesão Celular , Retina/embriologia , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/embriologia , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Proteínas de Ciclo Celular , Dados de Sequência Molecular , Mutação , Retina/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...